django-fernet-fields Documentation
Release 0.5.dev1

Carl Meyer

Sep 27,2017

Contents

Prerequisites
Installation

Usage

3.1 Fieldtypes e
3.2 Nullablefields

Keys

4.1 DisablingHKDF

Indexes, constraints, and lookups
Ordering

Migrations

Note about deploying to Heroku

Contributing

11

13

15

17

19

django-fernet-fields Documentation, Release 0.5.dev1

Fernet symmetric encryption for Django model fields, using the cryptography library.

Contents 1

https://cryptography.io/en/latest/fernet/
https://cryptography.io/en/latest/

django-fernet-fields Documentation, Release 0.5.dev1

2 Contents

CHAPTER 1

Prerequisites

django-fernet-fields supports Django 1.8.2 and later on Python 2.7, 3.3, 3.4, pypy, and pypy3.

Only PostgreSQL, SQLite, and MySQL are tested, but any Django database backend with support for BinaryField
should work.

http://www.djangoproject.com/

django-fernet-fields Documentation, Release 0.5.dev1

4 Chapter 1. Prerequisites

CHAPTER 2

Installation

django-fernet-fields is available on PyPI. Install it with:

pip install django-fernet-fields

https://pypi.python.org/pypi/django-fernet-fields/

django-fernet-fields Documentation, Release 0.5.dev1

6 Chapter 2. Installation

CHAPTER 3

Usage

Just import and use the included field classes in your models:

from django.db import models
from fernet_ fields import EncryptedTextField

class MyModel (models.Model) :
name = EncryptedTextField()

You can assign values to and read values from the name field as usual, but the values will automatically be encrypted
before being sent to the database and decrypted when read from the database.

Encryption and decryption are performed in your app; the secret key is never sent to the database server. The database
sees only the encrypted value of this field.

Field types

Several other field classes are included: EncryptedCharField, EncryptedEmailField,
EncryptedIntegerField, EncryptedDateField, and EncryptedDateTimeField. All field
classes accept the same arguments as their non-encrypted versions.

To create an encrypted version of some other custom field class, inherit from both EncryptedField and the other
field class:

from fernet_ fields import EncryptedField
from somewhere import MyField

class MyEncryptedField (EncryptedField, MyField):
pass

django-fernet-fields Documentation, Release 0.5.dev1

Nullable fields

Nullable encrypted fields are allowed; a None value in Python is translated to a real NULL in the database column.
Note that this trivially reveals the presence or absence of data in the column to an attacker. If this is a problem for your
case, avoid using a nullable encrypted field; instead store some other sentinel “empty” value (which will be encrypted
just like any other value) in a non-nullable encrypted field.

8 Chapter 3. Usage

CHAPTER 4

Keys

By default, django-fernet-fields uses your SECRET_KEY setting as the encryption key.

You can instead provide a list of keys in the FERNET_KEYS setting; the first key will be used to encrypt all new data,
and decryption of existing values will be attempted with all given keys in order. This is useful for key rotation: place
a new key at the head of the list for use with all new or changed data, but existing values encrypted with old keys will
still be accessible:

FERNET_KEYS = [
'new key for encrypting',
'older key for decrypting old data',

Warning: Once you start saving data using a given encryption key (whether your SECRET_KEY or another key),
don’t lose track of that key or you will lose access to all data encrypted using it! And keep the key secret; anyone
who gets ahold of it will have access to all your encrypted data.

Disabling HKDF

Fernet encryption requires a 32-bit url-safe base-64 encoded secret key. By default, django-fernet-fields
uses HKDF to derive such a key from whatever arbitrary secret key you provide.

If you wish to disable HKDF and provide your own Fernet-compatible 32-bit key(s) (e.g. generated with Fer-
net.generate_key()) directly instead, just set FERNET_USE_HKDF = False in your settings file. If this is set,
all keys specified in the FERNET_KEYS setting must be 32-bit and url-safe base64-encoded bytestrings. If a key is
not in the correct format, you’ll likely get “incorrect padding” errors.

Warning: If you don’t define a FERNET_KEYS setting, your SECRET_KEY setting is the fallback key. If you
disable HKDF, this means that your SECRET_KEY itself needs to be a Fernet-compatible key.

https://cryptography.io/en/latest/hazmat/primitives/key-derivation-functions/#cryptography.hazmat.primitives.kdf.hkdf.HKDF
https://cryptography.io/en/latest/fernet/#cryptography.fernet.Fernet.generate_key
https://cryptography.io/en/latest/fernet/#cryptography.fernet.Fernet.generate_key

django-fernet-fields Documentation, Release 0.5.dev1

10 Chapter 4. Keys

CHAPTER B

Indexes, constraints, and lookups

Because Fernet encryption is not deterministic (the same source text encrypted using the same key will result in a
different encrypted token each time), indexing or enforcing uniqueness or performing lookups against encrypted data

is useless. Every encrypted value will always be different, and every exact-match lookup will fail; other lookups’
results would be meaningless.

For this reason, EncryptedField will raise django.core.exceptions.ImproperlyConfigured if
passed any of db_index=True, unique=True, or primary_key=True, and any type of lookup on an
EncryptedField except for isnull will raise django.core.exceptions.FieldError.

11

django-fernet-fields Documentation, Release 0.5.dev1

12 Chapter 5. Indexes, constraints, and lookups

CHAPTER O

Ordering

Ordering a queryset by an EncryptedField will not raise an error, but it will order according to the encrypted
data, not the decrypted value, which is not very useful and probably not desired.

Raising an error would be better, but there’s no mechanism in Django for a field class to declare that it doesn’t support
ordering. It could be done easily enough with a custom queryset and model manager that overrides order_by () to
check the supplied field names. You might consider doing this for your models, if you’re concerned that you might
accidentally order by an EncryptedField and get junk ordering without noticing.

13

django-fernet-fields Documentation, Release 0.5.dev1

14 Chapter 6. Ordering

CHAPTER /

Migrations

If migrating an existing non-encrypted field to its encrypted counterpart, you won’t be able to use a simple
AlterField operation. Since your database has no access to the encryption key, it can’t update the column values
correctly. Instead, you’ll need to do a three-step migration dance:

1. Add the new encrypted field with a different name.

2. Write a data migration (using RunPython and the ORM, not raw SQL) to copy the values from the old field to
the new (which automatically encrypts them in the process).

3. Remove the old field and (if needed) rename the new encrypted field to the old field’s name.

15

django-fernet-fields Documentation, Release 0.5.dev1

16 Chapter 7. Migrations

CHAPTER 8

Note about deploying to Heroku

An important caveat when deploying an app dependent of Fernet to Heroku: you need to specify all requirements
(even dependencies of dependencies) explicitly. In general, this is a good practice for version pinning purposes. But
it’s necessary for Fernet on Heroku because it depends on cryptography library, which in turn depends on libffi, a C
library. When cryptography is explicitly defined on requirements.txt, Heroku knows it depends on libffi and installs it.

Therefore, an easy solution is to freeze your requirements after installing Fernet:

pip freeze > requirements.txt

17

https://cryptography.io/en/latest/
https://github.com/heroku/heroku-buildpack-python/blob/master/bin/steps/cryptography

django-fernet-fields Documentation, Release 0.5.dev1

18 Chapter 8. Note about deploying to Heroku

CHAPTER 9

Contributing

See the contributing docs.

19

https://github.com/orcasgit/django-fernet-fields/blob/master/CONTRIBUTING.rst

	Prerequisites
	Installation
	Usage
	Field types
	Nullable fields

	Keys
	Disabling HKDF

	Indexes, constraints, and lookups
	Ordering
	Migrations
	Note about deploying to Heroku
	Contributing

